Actualités
Projet DraGAN Nous avons pu tester en avant-première le « text to image » d'Adobe et sommes restés pantois. Il ouvre la voie à de très belles images obtenues de façon aisée. Et à d'autr ...
Autoencoder Image Denoising to Increase Optical Character Recognition Performance in Text Conversion
Our research aims to build an autoencoder for denoising text images and evaluate the OCR’s performance in converting the denoised image into text. The first step in the research is to test the OCR ...
In this project, I have built an image retrieval system using the AutoEncoder neural network. The network was trained with the CIFAR-10 dataset. The hyperparameters for training the model are provided ...
We used a pre-train variational autoencoder (vae: has an encoder and decoder ... References: How and why stable diffusion works for text to image generation ...
Abstract: The existing image-to-video translation methods generally follow ... We design a reconstruction loss and an embedding alignment loss to train the autoencoder to obtain the text-guided video ...
GODIVA uses the Vector Quantised-Variational AutoEncoder (VQ-VAE ... OpenAI's CLIP framework is capable of zero-shot matching of images to text, as well as facilitating image synthesis by reversing ...
and their abundance maps for each ROI are selected in the HSI2 image. Finally, we propose the best configuration and settings for the hyperparameters. The main contributions are summarized as follows: ...
We randomly masked voxels in three-dimensional brain image patches and trained an autoencoder to reconstruct the neuronal structures. Results and discussion: We tested different pre-training and ...
Certains résultats ont été masqués, car ils peuvent vous être inaccessibles.
Afficher les résultats inaccessibles